

SCAN Testbed, Overview and Opportunity for Experiments

Richard Reinhart

SCAN Testbed Principal Investigator

Sandra Johnson, Deputy Principal Investigator NASA Glenn Research Center, Cleveland, Ohio

Co-Principal Investigators: James Lux, Greg Heckler, Jacqueline Myrann ISS Research & Development Conference

Denver CO, June 2012

NASA

SCAN Testbed Research & Technology Goals & Objectives

INVESTIGATE the APPLICATION of SDRS TO NASA MISSIONS

- Mission advantages and development/verification/operations aspects
- On-Orbit Reconfiguration
- More process intensive functions within the radio subsystem

SDR TECHNOLOGY DEVELOPMENT

- SDR Platforms to TRL-7
- SDR platform hardware & waveform compliant to STRS, Foster Agency adoption
- Understand/characterize space effects and SDR performance

VALIDATE FUTURE MISSION OPERATIONAL CAPABILITIES

- Capability representative of future missions
 - Comm data rate, performance, <u>navigation/</u> GPS, <u>networking/</u>routing
- Understand SDR performance (reliability, SEE, telemetry, inetrumentation)
- Multiple and simultaneous RF Links (Ka-band, S-band, L-band/GPS)
- Experimenter sw applications (On-board networking, DTN, routing, and security applications)

SCAN Testbed Overview

- Sponsored by the NASA Space Communications and Navigation (SCaN) Program.
 - Across multiple Center; GRC, JPL, GSFC, JSC
- Launch to the International Space Station (ISS) on JAXA
 H-II Transfer Vehicle (HTV-3) summer 2012
 - Utilizes a Flight Releasable Attachment Mechanism (FRAM)based payload interface and is installed on the Expedite the Processing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC) at the ISS P3 location.
- The Flight System is a Class D payload planned to operate for five years on ISS (min design life is two years).
 - Ground System includes a flight-Like system for new radio software development

Future Home of SCAN Testbed

Concept of Operations & Connectivity

SCAN Testbed - Flight System Overview

Flight System Subsystems

Mechanical/Thermal

Avionics/Electrical

SDRs

RF/Antennas

APS

EXPRESS Pallet Adapter (ExPA)-

Flight Releasable Attachment Mechanism (FRAM)

JAXA Experiment

SCAN Testbed Experiment

Installed on an EP-MP for HTV Integration

Flight System Mass w/out ExPA, lb ExPA Mass, lb 260

Total Mass, lb 746

NASA

SDRs are the core "instrument" of the SCaN Testbed Communication System

STRS SDRs

- Software Abstraction
- · Single Standard on SDR and WF

JPL/L-3 CE

- S-band SDR
- 6 MHz wide channel
- L-band receive (GPS)
- Virtex II, Sparc Processor (100 MIPS), RTEMs

General Dynamics

- S-band SDR
- 6 MHz wide channel
- Virtex II,

ColdFire Processor (60 MIPS), VxWorks, CRAM (Chalcogenide RAM) Memory

10 Mbps Class

- Ka-band SDR
- 225 MHz wide channel
- Virtex IV,

- First Ka-band transceiver
- >100 Mbps Class

Software Defined Radio "SDR 101"

- Hardware and software that converts user data to over-the-air signals
- Hardware Signal processing, RF, power, thermal
 - Shift from fixed hardware to flexible, reprogrammable hardware (FPGA, processor)
 - Traditional hardware remains at RF front end (ADC, DAC, filters, amplifiers)
- Software Application (aka waveform), Managing (STRS)
 - Application Software communication, navigation, networking functions
 - e.g. modulation, coding, filtering, data framing, routing, orbit determination
 - Managing Software Controls the application software on the radio platform.
 - Loads/unloads application code and data to/from memory
 - Responsible for interprocess communications between software components

Provide platform services (timing, file manager, events)

7

STRS Simplified View

- Abstract app sw from underlying HW
 - Reduce mission dependence on radio provider for reconfigurations years after development/launch.
 - Minimum set of hardware and software interface
- Promote portability/reuse
 - Avoid proprietary application designs/ implementations.
- Mission flexibility, for different levels of available resources. – scalable
- Architecture simplified by mission planning and hw resource allocation.
 - No radio hardware discovery or dynamic WF allocation change across hardware – fewer resources (e.g. power, memory)
- Enable waveform component contributions to repository for reuse

SCaN Testbed Experiment Waveforms

(Launch Capability)

			Transmit (Return) Link		Receive (Forward) Link		
TDRSS Mode	Platform Provider	Waveform Provider	Modulation	User Data Rate (kbps)	De- modulation	User Data Rate (kbps)	Coding/ Decoding
S-band DG1, Mode 1	GD	GD	SQPN	24, 192	QPSK	18, 72	Rate 1/2 Viterbi
S-band DG1, Mode 2	GD	GD	SQPN	24, 192	QPSK	18, 72	Rate 1/2 Viterbi
S-band DG1, Mode 3	GD	GD	QPSK	<1000	QPSK	1000	Rate 1/2 Viterbi
S-band DG2	GD	GD	SQPSK	<1000	QPSK	1000	Rate 1/2 Viterbi
S-band DG1 Mode 2	JPL	GRC/GSFC	BPSK	24	BPSK	18	Rate 1/2 Viterbi
S-band DG2	JPL	GRC/GSFC	BPSK	192	BSPK	155	Rate 1/2 Viterbi
Ka-band DG2	Harris	Harris	SQPSK	100 Mbps 12.5 Mbps	BPSK	12.5 Mbps 3 Mbps	Rate 1/2 Viterbi

Specific waveform variations lead to numerous (>100) configurations

Flight Test and Measurements Provide Validation of New Technologies

SDR Platform Technology

- Reconfiguration (time, reliability, operations)
- Application Integration
- Space Effects (SEU, processing, memory, thermal, power)

System Architectures

- Connectivity: TDRSS and ground...relay and surface
- Multi-band, multi-TDRSS links
- Multiple access techniques (TDRSS)

Communication Applications

- Link capacity data rate, bandwidth efficiency, coding schemes
- Adaptive communications
- Cognitive Radio/Applications
- Data link protocol verifications
- Link performance
 - Error performance/rate (BER), Eb/No (SNR)
 - Error distribution
- Link characterizations

Flight Test and Measurements Provide Validation of New Technologies

Demo SDR-based GPS

- Comm and navigation functions time-multiplexed on common hardware
- Improved position, velocity, time (PVT)
- TASS enhancement of GPS navigation
- Re-broadcast of GPS corrections to other s/c
- Navigation data fusion

Evaluation of new GPS

 New signals (L5) to be added without rebuilding hardware

Precision relative navigation

Rendezvous and docking

On-Board Routing

- Connectivity, network characterization, link statistics
- **Delay/Disruption Tolerant Networking (DTN)**
 - Automated store-n-forward
 - Adaptive routing
 - Traffic prioritization
 - Link layer error control/ cross link optimization
- IP in Space
- **Common Command/Data Interface Experiments**
- **Distributed Processing**
 - Efficiency, reliability

Experimenter Access Points within SCaN TestBed System

= Experiment Element (e.g. sw, fw, hw, component)

Experimenters have access to

Flt SDRs, avionics, Gnd SDR, various ground points

Call for Experiment Proposals

- After Commissioning is complete, the testbed will be available for experiments
- Experiment announcement call in mid 2012 for external experiments
 - The call will go to NASA, industry, academic partners and other government agencies
 - Experiments selected will complement experiments already selected from internal to NASA and through the SBIR process
- Goal is to develop an experiments program to utilize the SCaN Testbed for the benefit of the Space Communication and Navigation (SCaN) Program, and NASA

Summary – SDR Experiment on ISS

- SCaN Testbed scheduled for launch in mid-2012
- Experiments Program seeks participation by NASA, industry, academia, and OGA to use the SCAN Testbed.
 - Call for experiments released in mid 2012.
- Broad participation will create a forum to exchange ideas and results, create new experiments, new partnerships, and disseminate results
- STRS abstracts waveform from underlying hardware
 - Increase the base of domain experts around a common standard.
 - Seeking input to STRS by other agencies (standardization effort in FY12)
- SCAN Testbed reduces the risk of infusing SDRs and their applications (comm, nav, networking) into NASA missions

Backup

separating WF from HW

dependency

SDR Developer/Operations Roles

- Platform Supplier
 - Hardware
 - Operating Environment
- Waveform Developer
 - Waveform App
- SDR Integrator
 - Combines waveform applications with the platform.
 - non-SDR model, the integration is done at the radio manufacturer
- System Integrator
 - integrates the complete radio (hw/wf) with the rest of the spacecraft.

Acronym List (1 of 2)

- API Application Programming Interface
- ASIC Application Specific Integrated Circuit
- BER Bit Error Rate
- BPSK Bi-Phase Shift Keying
- BSP Board Support Package
- CE Cincinnati Electronics
- DSP Digital Signal Processing
- DTE Direct to Earth
- DTN Disruptive Tolerant Networking
- EDAC Error Detection and Correction
- **ELC EXPRESS Logistics Carrier**
- FPGA Field Programmable Gate Array
- FW Firmware

- GD General Dynamics
- **GPM General Processing Module**
- GPS Global Positioning System
- GRC Glenn Research Center
- GSFC Goddard Space Flight Center
- HAL Hardware Abstraction Layer
- HID Hardware Interface Definition
- HGA High Gain Antenna
- HPA High power Amplifier
- HW Hardware
- JPL Jet Propulsion Lab
- JSC Johnson Space Center
- LGA Low Gain Antenna

Acronym List (2 of 2)

- OE Operating Environment
- OGA Other Government
- QPSK Quadrature Phase Shift Keying
- PVT Position, Velocity, Time
- RF Radio Frequency
- RTN Return
- RTOS Real Time Operating System
- SDR Software Defined Radio
- SEE Space Environment Effects
- SEU Single Event Upset
- SN Space Network

- SNR Signal-to-Noise Ratio
- SQPN Staggered QPSK PN Spread
- SQPSK Staggered Quadrature Phase Shift Keying
- STRS Space Telecommunications Radio System
- SW Software
- TDRS Tracking Data Relay Satellite
- TDRSS Tracking Data Relay Satellite System
- TRL Technology Readiness level
- TWTA Traveling Wave Tube Amplifier
- V2 Vitex II
- V4 Virtex IV
- WSC White Sands Complex
- WF Waveform